Complete-simple distributive lattices] A construction of complete-simple distributive lattices Computer Science Department University of Winnebago Winnebago, Minnesota 23714 menuhin@ccw.uwinnebago.edu ${ }^{11}$
Key words: Complete lattice, distributive lattice, complete congruence, congruence lattice

Primary: 06B10; Secondary: 06D05

Abstract

In this note we prove that there exist complete-simple distributive lattices, that is, complete distributive lattices in which there are only two complete congruences.
G. A. Menuhin

March 15, 1995

1 Introduction

In this note we prove the following result:
[Sorry. Ignored \begin\{main\} ... \end\{main \}] }

2 The construction

For the basic notation in lattice theory and universal algebra, see F. R. Richardson [] and G. A. Menuhin []. We start with some definitions:
Definition 1 Let V be a complete lattice, and let $p=[u, v]$ be an interval of V. Then p is called complete-prime if the following three conditions are satisfied:
(1) u is meet-irreducible but u is not completely meet-irreducible;
(2) v is join-irreducible but v is not completely join-irreducible;
(3) $[u, v]$ is a complete-simple lattice.

Now we prove the following result:
Lemma 1 Let D be a complete distributive lattice satisfying conditions (1) and (2). Then is a sublattice of ; hence is a lattice, and is a complete distributive lattice satisfying conditions (1) and (2).

$$
\text { [Sorry. Ignored \begin } \{ \text { proof } \} \text { ... \end\{proof } \}]}
$$

Corollary 1 If D is complete-prime, then so is .
The motivation for the following result comes from S.-K. Foo [].
Lemma 2 Let τ be a complete congruence relation of such that
1 Research supported by the NSF under grant number 23466.

$$
\begin{equation*}
\langle 1, d\rangle \equiv\langle 1,1\rangle \tau, \tag{1}
\end{equation*}
$$

for some $d \in D$ with $d<1$. Then $\tau=l$.
[Sorry. Ignored \begin\{proof \} ... \end\{proof \}] }

3 The construction

The following construction is crucial to our proof of the Main Theorem:
Definition 2 Let for $i \in I$ be complete distributive lattices satisfying condition (2).
Their product is defined as follows:
that is, is with a new unit element.
[Sorry. Ignored \begin\{notation\} ... \end\{notation \}] }
See also E. T. Moynahan []. Next we verify:
Theorem 1 Let for $i \in I$ be complete distributive lattices satisfying condition (2). Let τ be a complete congruence relation on. If there exist $i \in I$ and with such that for all,
then $\tau=l$.
[Sorry. Ignored \begin\{proof \} ... \end\{proof \}] }
Theorem 2 Let for $i \in I$ be complete distributive lattices satisfying conditions (2) and (3). Then also satisfies conditions (2) and (3).
[Sorry. Ignored \begin\{proof \} ... \end\{proof \}] }
The Main Theorem follows easily from Theorems and.

References

[] Soo-Key Foo, Lattice Constructions, Ph.D. thesis, University of Winnebago, Winnebago, MN, December 1990.
[] George A. Menuhin, Universal Algebra, D. van Nostrand, Princeton-Toronto-London-Melbourne, 1968.
[] Ernest T. Moynahan, On a problem of M. H. Stone, Acta Math. Acad.Sci. Hungar. 8 (1957), 455-460.
[] , Ideals and congruence relations in lattices. II, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 9 (1957), 417-434 (Hungarian).
[] Ferenc R. Richardson, General Lattice Theory, Mir, Moscow, expanded and revised ed., 1982 (Russian).

